Original Scientific Article
SEROTONIN IMMUNOREACTIVE CELLS IN EXTRAHEPATIC BILE DUCTS, MAJOR DUODENAL PAPILLA AND GALLBLADDER IN THE DOMESTIC PIG
The main part of serotonin in the body is synthesized and released by a certain type of enteroendocrine cells in the intestinal mucosa called enterochromaffin cells. The scarce qualitative and quantitative data on enterochromaffin and serotonin-positive mast cells in porcine extrahepatic bile ducts and gallbladder, motivated us to undertake the present study. The aim of this study was to determine the localization and density of serotonin-positive cells in the wall of the extrahepatic bile ducts and gallbladder in pigs. An immunohistochemical method was used to identify enterochromaffin cells and determine their percentage relative to the total number of endocrine cells labeled with chromogranin A. Serotonin-positive mast cells were identified after tryptase staining of serial sections. The endocrine function of mast cells was demonstrated by chromogranin A immunolabeling. The highest number of enterochromaffin cells were found in the intramural part of the ductus choledochus, followed by the papilla duodeni major, extramural part of the ductus choledochus, ductus hepaticus comunis, ductus cysticus, and gallbladder. In all parts of the extrahepatic bile ducts, the highest number of mast cells was found in the muscle layer, followed by the serosal layer and the propria. The expression of serotonin in the enterochromaffin cells of the biliary glands and in the mast cells of the analyzed organs suggests a possible synthesis of serotonin, which probably regulates physiological and pathological processes.
https://macvetrev.mk/LoadArticlePdf/380
2024-3-15
23
35
https://doi.org/10.2478/macvetrev-2024-0012
serotonin
enterochromaffin cells
mast cells
bile ducts
gallbladder
Ivaylo
Stefanov
ivstefanov@abv.bg
false
1
Department of Anatomy, Medical Faculty, Trakia University, Stara Zagora, Bulgaria ; Department of Anatomy, Histology and Embryology, Pathology, Medical Faculty, Prof. Dr. Asen Zlatarov University, Burgas, Bulgaria
LEAD_AUTHOR
Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41-47. PMid:17180178
1
https://doi.org/10.1039/B611920D
Gershon, M.D. (2005). Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 39(5 Suppl.3): S184-193. PMid:15798484
2
https://doi.org/10.1097/01.mcg.0000156403.37240.30
Hoffman, J.M., Tyler, K., MacEachern, S.J., Balemba, O.B., Johnson, A.C., Brooks, E.M., Zhao, H., et al. (2012). Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4): 844-854.e4. PMid:22226658 PMCid:PMC3477545
3
https://doi.org/10.1053/j.gastro.2011.12.041
Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.A., Bayard, E., et al. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A. 100(23): 13525-13530. PMid:14597720 PMCid:PMC263847
4
https://doi.org/10.1073/pnas.2233056100
Betari, N., Sahlholm, K., Ishizuka, Y., Teigen, K., Haavik, J. (2020). Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem. 12(16): 1461-1474. PMid:32752885
5
https://doi.org/10.4155/fmc-2020-0127
Walther, D.J., Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 66(9): 1673-1680. PMid:14563478
6
https://doi.org/10.1016/S0006-2952(03)00556-2
Raybould, H.E. (2010). Gut chemosensing:interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153(1-2): 41-46. PMid:19674941 PMCid:PMC3014315
7
https://doi.org/10.1016/j.autneu.2009.07.007
Gershon, M.D. (1999). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 13, (Suppl 2): 15-30.
8
https://doi.org/10.1046/j.1365-2036.1999.00002.x-i2
Hatami-Monazah, H., Abdallah, O. (1978). Study on the morphology of the gall-bladder of the goat. Acta Anat (Basel). 100(2): 203-209. PMid:619497
9
https://doi.org/10.1159/000144900
Sand, J., Tainio, H., Nordback, I. (1993). Neuropeptides in pig sphincter of Oddi, bile duct, gallbladder, and duodenum. Dig Dis Sci. 38(4): 694-700. PMid:8462369
10
https://doi.org/10.1007/BF01316802
Gulubova, M.V., Valkova, I.V., Ivanova, K.V., Ganeva, I.G., Prangova, D.K., Ignatova, M.M.K., Vasilev, S.R., Stefanov, I.S. (2017). Endocrine cells in pig’s gallbladder, ductus cysticus and ductus choledochus with special reference to ghrelin. Bulg Chem Commun. Special Issue E. 184-190.
11
Zuccarello, B., Spada, A., Turiaco, N., Villari, D., Parisi, S., Francica, I., Fazzari, C., et al. (2009). Intramural ganglion structures in esophageal atresia: a morphologic and immunohistochemical study. Int Jo Pediatr. 2009:695837. PMid:20041008 PMCid:PMC2778171
12
https://doi.org/10.1155/2009/695837
Costa, M., Brookes, S.J., Steele, P.A., Gibbins, I., Burcher, E., Kandiah, C.J. (1996). Neurochemical classification of myenteric neurons in the guineapig ileum. Neuroscience 75(3): 949-967. PMid:8951887
13
https://doi.org/10.1016/0306-4522(96)00275-8
Costa, M., Furness, J.B., Cuello, A.C., Verhofstad, A.A., Steinbusch, H.W., Elde, R.P. (1982). Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7(2): 351-363. PMid:6210850
14
https://doi.org/10.1016/0306-4522(82)90272-X
Young, H.M., Furness, J.B. (1995). Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol. 356(1): 101-114. PMid:7629305
15
https://doi.org/10.1002/cne.903560107
Galligan, J.J., LePard, K.J., Schneider, D.A., Zhou, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst. 81(1-3): 97-103. PMid:10869707
16
https://doi.org/10.1016/S0165-1838(00)00130-2
Monro, R.L., Bertrand, P.P., Bornstein, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil. 14(3): 255-264. PMid:12061910
17
https://doi.org/10.1046/j.1365-2982.2002.00325.x
Gustafsson, B.I., Bakke, I., Tømmerås, K., Waldum, H.L. (2006). A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol. 41(4): 390-395. PMid:16635905
18
https://doi.org/10.1080/00365520500331281
Ahern, G.P. (2011). 5-HT and the immune system. Curr Opin Pharmacol. 11(1): 29-33. PMid:21393060 PMCid:PMC3144148
19
https://doi.org/10.1016/j.coph.2011.02.004
Shajib, M.S., Khan, W.I. (2015). The role of serotonin and its receptors in activation of immune responses and infammation. Acta Physiol (Oxf). 213(3): 561-574. PMid:25439045
20
https://doi.org/10.1111/apha.12430
Shajib, M.S., Baranov, A., Khan, W.I. (2017). Diverse efects of gut-derived serotonin in intestinal infammation. ACS Chem Neurosci. 8(5): 920-931. PMid:28288510
21
https://doi.org/10.1021/acschemneuro.6b00414
Hadengue, A., Moreau, R., Cerini, R., Koshy, A., Lee, S.S., Lebrec, D. (1989). Combination of ketanserin and verapamil or propranolol in patients with alcoholic cirrhosis: search for an additive effect. Hepatology 9(1): 83-87. PMid:2908872
22
https://doi.org/10.1002/hep.1840090113
Vorobioff, J., Garcia-Tsao, G., Groszmann, R., Aceves, G., Picabea, E., Villavicencio, R., Hernandez-Ortiz, J. (1989). Long-term hemodynamic effects of ketanserin, a 5-hydroxytryptamine blocker, in portal hypertensive patients. Hepatology 9(1): 88-91. PMid:2908873
23
https://doi.org/10.1002/hep.1840090114
Islam, M.Z., Williams, B.C., Madhavan, K.K., Hayes, P.C., Hadoke, P.W. (2000). Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cirrhosis. Gastroenterology 118(4): 765-771. PMid:10734028
24
https://doi.org/10.1016/S0016-5085(00)70146-6
Marzioni, M., Glaser, S., Francis, H., Marucci, L., Benedetti, A., Alvaro, D., Taffetani, S., et al. (2005). Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology. 128(1): 121-137. PMid:15633129
25
https://doi.org/10.1053/j.gastro.2004.10.002
Cosme, A., Barrio, J., Lobo, C., Gil, I., Castiella, A., Arenas, J.I. (1996). Acute cholestasis by fluoxetine. Am J Gastroenterol. 91(11): 2449-2450.
26
Ruddell, R.G., Mann, D.A., Ramm, G.A. (2008). The function of serotonin within the liver. J Hepatol. 48(4): 666-675. PMid:18280000
27
https://doi.org/10.1016/j.jhep.2008.01.006
Mann, D.A, Oakley, F. (2013). Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 1832(7): 905-910. PMid:23032152 PMCid:PMC3793867
28
https://doi.org/10.1016/j.bbadis.2012.09.009
Omenetti, A., Yang, L., Gainetdinov, R.R., Guy, C.D., Choi, S.S., Chen, W., Caron, M.G., Diehl, A.M. (2011). Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 300(2): G303-315. PMid:21071507 PMCid:PMC3043647
29
https://doi.org/10.1152/ajpgi.00368.2010
Yu, P.L., Fujimura, M., Okumiya, K., Kinoshita, M., Hasegawa, H., Fujimiya, M. (1999). Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol. 411(4): 654-665.
30
https://doi.org/10.1002/(SICI)1096-9861(19990906)411:4<654::AID-CNE9>3.0.CO;2-H
Buhner, S., Schemann, M. (2012). Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 1822(1): 85-92. PMid:21704703
31
https://doi.org/10.1016/j.bbadis.2011.06.004
Kushnir-Sukhov, N.M., Brown, J.M., Wu, Y., Kirshenbaum, A., Metcalfe, D.D. (2007). Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 119(2): 498-499. PMid:17291861
32
https://doi.org/10.1016/j.jaci.2006.09.003
Kushnir-Sukhov, N.M., Brittain, E., Scott, L., Metcalfe, D.D. (2008). Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest. 38(12): 953-958. PMid:19021721 PMCid:PMC3795418
33
https://doi.org/10.1111/j.1365-2362.2008.02047.x
Boehme, S.A., Lio, F.M., Sikora, L., Pandit, T.S., Lavrador, K., Rao, S.P., Sriramarao, P. (2004). Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol. 173(6): 3599-3603. PMid:15356103
34
https://doi.org/10.4049/jimmunol.173.6.3599
Kushnir-Sukhov, N.M., Gilfillan, A.M., Coleman, J.W., Brown, J.M., Bruening, S., Toth, M., Metcalfe, D.D. (2006). 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol. 177(9):6422-6432. PMid:17056574
35
https://doi.org/10.4049/jimmunol.177.9.6422
Idzko, M., Panther, E., Stratz, C., Müller, T., Bayer, H., Zissel, G., Dürk, T., et al. (2004). The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 172(10): 6011-6019. PMid:15128784
36
https://doi.org/10.4049/jimmunol.172.10.6011
Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., Sorichter, S., et al. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 4(7): e6453. PMid:19649285 PMCid:PMC2714071
37
https://doi.org/10.1371/journal.pone.0006453
Dürk, T., Panther, E., Müller, T., Sorichter, S., Ferrari, D., Pizzirani, C., Di Virgilio, F., et al. (2005). 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 17(5): 599-606. PMid:15802305
38
https://doi.org/10.1093/intimm/dxh242
Soga, F., Katoh, N., Inoue, T., Kishimoto, S. (2007). Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 127(8): 1947-1955. PMid:17429435
39
https://doi.org/10.1038/sj.jid.5700824
Ghia, J.E., Li, N., Wang, H., Collins, M., Deng, Y., El-Sharkawy, R.T., Côté, F., et al. (2009). Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5): 1649-1660. PMid:19706294
40
https://doi.org/10.1053/j.gastro.2009.08.041
Murtaugh, M.P., Monteiro-Riviere, N.A., Panepinto, L. (1996). Swine research breeds, methods, and biomedical models. In: M.E. Tumbleson, Schook L.B., (Eds.), Advances in Swine in Biomedical Research, Vol. 2 (pp. 423-424). Springer New York, NY
41
https://doi.org/10.1007/978-1-4615-5885-9_1
Walters, E.M., Prather, R.S. (2013). Advancing swine models for human health and diseases. Mo Med. 110(3): 212-215.
42
Zhu, H.Y., Li, F., Li, K.W., Zhang, X.W., Wang, J., Ji, F. (2013). Transumbilical endoscopic cholecystectomy in a porcine model. Acta Cir Bras. 28(11): 762-766. PMid:24316742
43
https://doi.org/10.1590/S0102-86502013001100003
Gilloteaux, J., Pomerants, B., Kelly, T.R. (1989). Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am J Anat. 184(4): 321-333. PMid:2474241
44
https://doi.org/10.1002/aja.1001840407
Cristina, M.L., Lehy, T., Zeitoun, P., Dufougeray, F. (1978). Fine structural classification and comparative distribution of endocrine cells in normal human large intestine. Gastroenterology. 75(1): 20-28. PMid:95721
45
https://doi.org/10.1016/0016-5085(78)93758-7
Sjölund, K., Sandén, G., Håkanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5): 1120-1130. PMid:6194039
46
https://doi.org/10.1016/S0016-5085(83)80080-8
Buffa, R., Capella, C., Fontana, P., Usellini, L., Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 192(2): 227-240. PMid:699014
47
https://doi.org/10.1007/BF00220741
Modlin, I.M., Kidd, M., Pfragner, R., Eick, G.N., Champaneria, M.C. (2006). The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 91(6): 2340-2348. PMid:16537680
48
https://doi.org/10.1210/jc.2006-0110
Cooke, H.J., (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 915, 77-80. PMid:11193603
49
https://doi.org/10.1111/j.1749-6632.2000.tb05225.x
Brown, D.R. (1996). Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behav Brain Res. 73(1-2): 193-197. PMid:8788501
50
https://doi.org/10.1016/0166-4328(96)00095-2
Townsend, D., Casey, M.A., Brown, D.R. (2005). Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. Eur J Pharmacol. 519(3): 285-289. PMid:16135363 PMCid:PMC4277208
51
https://doi.org/10.1016/j.ejphar.2005.07.023
Säfsten, B., Sjöblom, M., Flemström, G. (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol. 41(11): 1279-1289. PMid:17060121
52
https://doi.org/10.1080/00365520600641480
Sörensson, J., Jodal, M., Lundgren, O. (2001). Involvement of nerves and calcium channels in the intestinal response to Clostridium difficile toxin A: an experimental study in rats in vivo. Gut 49(1): 56-65. PMid:11413111 PMCid:PMC1728359
53
https://doi.org/10.1136/gut.49.1.56
Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. (2004). Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 53(7): 952-957. PMid:15194642 PMCid:PMC1774112
54
https://doi.org/10.1136/gut.2003.033563
Pal, P.K., Sarkar, S., Chattopadhyay, A., Tan, D.X., Bandyopadhyay, D. (2019). Enterochromaffin cells as the souce of melatonin: Key findings and functional relevance in mammals. Melatonin Res. 2(4): 61-82.
55
https://doi.org/10.32794/mr11250041
Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., Leon, J., Bandyopadhyay, D. (2003). Neurallymediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. J Physiol Pharmacol. 54(Suppl 4): 113-125.
56
Brookes, S.J., Steele, P.A., Costa, M. (1991). Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263(3): 471-481. PMid:1715238
57
https://doi.org/10.1007/BF00327280
Galligan, J.J., Costa, M., Furness, J.B. (1988). Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 253(3): 647-656. PMid:3180190
58
https://doi.org/10.1007/BF00219756
Vanner, S. (2000). Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol. 279(2): G380-387. PMid:10915648
59
https://doi.org/10.1152/ajpgi.2000.279.2.G380
Round, A., Wallis, D.I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26(1): 39-48. PMid:3561718
60
https://doi.org/10.1016/0028-3908(87)90042-6
Hillsley, K., Grundy, D. (1998). Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol. 509(Pt 3): 717-727. PMid:9596794 PMCid:PMC2230991
61
https://doi.org/10.1111/j.1469-7793.1998.717bm.x
Glatzle, J., Sternini, C., Robin, C., Zittel, T.T., Wong, H., Reeve, J.R. Jr, Raybould, H.E. (2002). Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123(1): 217-226. PMid:12105850
62
https://doi.org/10.1053/gast.2002.34245
Zhu, J.X., Zhu, X.Y., Owyang, C., Li, Y. (2001). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 530(Pt 3): 431-442. Retraction in: J Physiol. 2023 May; 601(10): 2047 PMid:11158274 PMCid:PMC2278417
63
https://doi.org/10.1111/j.1469-7793.2001.0431k.x