Original Scientific Article SEROTONIN IMMUNOREACTIVE CELLS IN EXTRAHEPATIC BILE DUCTS, MAJOR DUODENAL PAPILLA AND GALLBLADDER IN THE DOMESTIC PIG The main part of serotonin in the body is synthesized and released by a certain type of enteroendocrine cells in the intestinal mucosa called enterochromaffin cells. The scarce qualitative and quantitative data on enterochromaffin and serotonin-positive mast cells in porcine extrahepatic bile ducts and gallbladder, motivated us to undertake the present study. The aim of this study was to determine the localization and density of serotonin-positive cells in the wall of the extrahepatic bile ducts and gallbladder in pigs. An immunohistochemical method was used to identify enterochromaffin cells and determine their percentage relative to the total number of endocrine cells labeled with chromogranin A. Serotonin-positive mast cells were identified after tryptase staining of serial sections. The endocrine function of mast cells was demonstrated by chromogranin A immunolabeling. The highest number of enterochromaffin cells were found in the intramural part of the ductus choledochus, followed by the papilla duodeni major, extramural part of the ductus choledochus, ductus hepaticus comunis, ductus cysticus, and gallbladder. In all parts of the extrahepatic bile ducts, the highest number of mast cells was found in the muscle layer, followed by the serosal layer and the propria. The expression of serotonin in the enterochromaffin cells of the biliary glands and in the mast cells of the analyzed organs suggests a possible synthesis of serotonin, which probably regulates physiological and pathological processes. https://macvetrev.mk/LoadArticlePdf/380 2024-3-15 23 35 https://doi.org/10.2478/macvetrev-2024-0012 serotonin enterochromaffin cells mast cells bile ducts gallbladder Ivaylo Stefanov ivstefanov@abv.bg false 1 Department of Anatomy, Medical Faculty, Trakia University, Stara Zagora, Bulgaria ; Department of Anatomy, Histology and Embryology, Pathology, Medical Faculty, Prof. Dr. Asen Zlatarov University, Burgas, Bulgaria LEAD_AUTHOR Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41-47. PMid:17180178 1 https://doi.org/10.1039/B611920D Gershon, M.D. (2005). Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 39(5 Suppl.3): S184-193. PMid:15798484 2 https://doi.org/10.1097/01.mcg.0000156403.37240.30 Hoffman, J.M., Tyler, K., MacEachern, S.J., Balemba, O.B., Johnson, A.C., Brooks, E.M., Zhao, H., et al. (2012). Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4): 844-854.e4. PMid:22226658 PMCid:PMC3477545 3 https://doi.org/10.1053/j.gastro.2011.12.041 Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.A., Bayard, E., et al. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A. 100(23): 13525-13530. PMid:14597720 PMCid:PMC263847 4 https://doi.org/10.1073/pnas.2233056100 Betari, N., Sahlholm, K., Ishizuka, Y., Teigen, K., Haavik, J. (2020). Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem. 12(16): 1461-1474. PMid:32752885 5 https://doi.org/10.4155/fmc-2020-0127 Walther, D.J., Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 66(9): 1673-1680. PMid:14563478 6 https://doi.org/10.1016/S0006-2952(03)00556-2 Raybould, H.E. (2010). Gut chemosensing:interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153(1-2): 41-46. PMid:19674941 PMCid:PMC3014315 7 https://doi.org/10.1016/j.autneu.2009.07.007 Gershon, M.D. (1999). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 13, (Suppl 2): 15-30. 8 https://doi.org/10.1046/j.1365-2036.1999.00002.x-i2 Hatami-Monazah, H., Abdallah, O. (1978). Study on the morphology of the gall-bladder of the goat. Acta Anat (Basel). 100(2): 203-209. PMid:619497 9 https://doi.org/10.1159/000144900 Sand, J., Tainio, H., Nordback, I. (1993). Neuropeptides in pig sphincter of Oddi, bile duct, gallbladder, and duodenum. Dig Dis Sci. 38(4): 694-700. PMid:8462369 10 https://doi.org/10.1007/BF01316802 Gulubova, M.V., Valkova, I.V., Ivanova, K.V., Ganeva, I.G., Prangova, D.K., Ignatova, M.M.K., Vasilev, S.R., Stefanov, I.S. (2017). Endocrine cells in pig’s gallbladder, ductus cysticus and ductus choledochus with special reference to ghrelin. Bulg Chem Commun. Special Issue E. 184-190. 11 Zuccarello, B., Spada, A., Turiaco, N., Villari, D., Parisi, S., Francica, I., Fazzari, C., et al. (2009). Intramural ganglion structures in esophageal atresia: a morphologic and immunohistochemical study. Int Jo Pediatr. 2009:695837. PMid:20041008 PMCid:PMC2778171 12 https://doi.org/10.1155/2009/695837 Costa, M., Brookes, S.J., Steele, P.A., Gibbins, I., Burcher, E., Kandiah, C.J. (1996). Neurochemical classification of myenteric neurons in the guineapig ileum. Neuroscience 75(3): 949-967. PMid:8951887 13 https://doi.org/10.1016/0306-4522(96)00275-8 Costa, M., Furness, J.B., Cuello, A.C., Verhofstad, A.A., Steinbusch, H.W., Elde, R.P. (1982). Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7(2): 351-363. PMid:6210850 14 https://doi.org/10.1016/0306-4522(82)90272-X Young, H.M., Furness, J.B. (1995). Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol. 356(1): 101-114. PMid:7629305 15 https://doi.org/10.1002/cne.903560107 Galligan, J.J., LePard, K.J., Schneider, D.A., Zhou, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst. 81(1-3): 97-103. PMid:10869707 16 https://doi.org/10.1016/S0165-1838(00)00130-2 Monro, R.L., Bertrand, P.P., Bornstein, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil. 14(3): 255-264. PMid:12061910 17 https://doi.org/10.1046/j.1365-2982.2002.00325.x Gustafsson, B.I., Bakke, I., Tømmerås, K., Waldum, H.L. (2006). A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol. 41(4): 390-395. PMid:16635905 18 https://doi.org/10.1080/00365520500331281 Ahern, G.P. (2011). 5-HT and the immune system. Curr Opin Pharmacol. 11(1): 29-33. PMid:21393060 PMCid:PMC3144148 19 https://doi.org/10.1016/j.coph.2011.02.004 Shajib, M.S., Khan, W.I. (2015). The role of serotonin and its receptors in activation of immune responses and infammation. Acta Physiol (Oxf). 213(3): 561-574. PMid:25439045 20 https://doi.org/10.1111/apha.12430 Shajib, M.S., Baranov, A., Khan, W.I. (2017). Diverse efects of gut-derived serotonin in intestinal infammation. ACS Chem Neurosci. 8(5): 920-931. PMid:28288510 21 https://doi.org/10.1021/acschemneuro.6b00414 Hadengue, A., Moreau, R., Cerini, R., Koshy, A., Lee, S.S., Lebrec, D. (1989). Combination of ketanserin and verapamil or propranolol in patients with alcoholic cirrhosis: search for an additive effect. Hepatology 9(1): 83-87. PMid:2908872 22 https://doi.org/10.1002/hep.1840090113 Vorobioff, J., Garcia-Tsao, G., Groszmann, R., Aceves, G., Picabea, E., Villavicencio, R., Hernandez-Ortiz, J. (1989). Long-term hemodynamic effects of ketanserin, a 5-hydroxytryptamine blocker, in portal hypertensive patients. Hepatology 9(1): 88-91. PMid:2908873 23 https://doi.org/10.1002/hep.1840090114 Islam, M.Z., Williams, B.C., Madhavan, K.K., Hayes, P.C., Hadoke, P.W. (2000). Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cirrhosis. Gastroenterology 118(4): 765-771. PMid:10734028 24 https://doi.org/10.1016/S0016-5085(00)70146-6 Marzioni, M., Glaser, S., Francis, H., Marucci, L., Benedetti, A., Alvaro, D., Taffetani, S., et al. (2005). Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology. 128(1): 121-137. PMid:15633129 25 https://doi.org/10.1053/j.gastro.2004.10.002 Cosme, A., Barrio, J., Lobo, C., Gil, I., Castiella, A., Arenas, J.I. (1996). Acute cholestasis by fluoxetine. Am J Gastroenterol. 91(11): 2449-2450. 26 Ruddell, R.G., Mann, D.A., Ramm, G.A. (2008). The function of serotonin within the liver. J Hepatol. 48(4): 666-675. PMid:18280000 27 https://doi.org/10.1016/j.jhep.2008.01.006 Mann, D.A, Oakley, F. (2013). Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 1832(7): 905-910. PMid:23032152 PMCid:PMC3793867 28 https://doi.org/10.1016/j.bbadis.2012.09.009 Omenetti, A., Yang, L., Gainetdinov, R.R., Guy, C.D., Choi, S.S., Chen, W., Caron, M.G., Diehl, A.M. (2011). Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 300(2): G303-315. PMid:21071507 PMCid:PMC3043647 29 https://doi.org/10.1152/ajpgi.00368.2010 Yu, P.L., Fujimura, M., Okumiya, K., Kinoshita, M., Hasegawa, H., Fujimiya, M. (1999). Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol. 411(4): 654-665. 30 https://doi.org/10.1002/(SICI)1096-9861(19990906)411:4<654::AID-CNE9>3.0.CO;2-H Buhner, S., Schemann, M. (2012). Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 1822(1): 85-92. PMid:21704703 31 https://doi.org/10.1016/j.bbadis.2011.06.004 Kushnir-Sukhov, N.M., Brown, J.M., Wu, Y., Kirshenbaum, A., Metcalfe, D.D. (2007). Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 119(2): 498-499. PMid:17291861 32 https://doi.org/10.1016/j.jaci.2006.09.003 Kushnir-Sukhov, N.M., Brittain, E., Scott, L., Metcalfe, D.D. (2008). Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest. 38(12): 953-958. PMid:19021721 PMCid:PMC3795418 33 https://doi.org/10.1111/j.1365-2362.2008.02047.x Boehme, S.A., Lio, F.M., Sikora, L., Pandit, T.S., Lavrador, K., Rao, S.P., Sriramarao, P. (2004). Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol. 173(6): 3599-3603. PMid:15356103 34 https://doi.org/10.4049/jimmunol.173.6.3599 Kushnir-Sukhov, N.M., Gilfillan, A.M., Coleman, J.W., Brown, J.M., Bruening, S., Toth, M., Metcalfe, D.D. (2006). 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol. 177(9):6422-6432. PMid:17056574 35 https://doi.org/10.4049/jimmunol.177.9.6422 Idzko, M., Panther, E., Stratz, C., Müller, T., Bayer, H., Zissel, G., Dürk, T., et al. (2004). The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 172(10): 6011-6019. PMid:15128784 36 https://doi.org/10.4049/jimmunol.172.10.6011 Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., Sorichter, S., et al. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 4(7): e6453. PMid:19649285 PMCid:PMC2714071 37 https://doi.org/10.1371/journal.pone.0006453 Dürk, T., Panther, E., Müller, T., Sorichter, S., Ferrari, D., Pizzirani, C., Di Virgilio, F., et al. (2005). 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 17(5): 599-606. PMid:15802305 38 https://doi.org/10.1093/intimm/dxh242 Soga, F., Katoh, N., Inoue, T., Kishimoto, S. (2007). Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 127(8): 1947-1955. PMid:17429435 39 https://doi.org/10.1038/sj.jid.5700824 Ghia, J.E., Li, N., Wang, H., Collins, M., Deng, Y., El-Sharkawy, R.T., Côté, F., et al. (2009). Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5): 1649-1660. PMid:19706294 40 https://doi.org/10.1053/j.gastro.2009.08.041 Murtaugh, M.P., Monteiro-Riviere, N.A., Panepinto, L. (1996). Swine research breeds, methods, and biomedical models. In: M.E. Tumbleson, Schook L.B., (Eds.), Advances in Swine in Biomedical Research, Vol. 2 (pp. 423-424). Springer New York, NY 41 https://doi.org/10.1007/978-1-4615-5885-9_1 Walters, E.M., Prather, R.S. (2013). Advancing swine models for human health and diseases. Mo Med. 110(3): 212-215. 42 Zhu, H.Y., Li, F., Li, K.W., Zhang, X.W., Wang, J., Ji, F. (2013). Transumbilical endoscopic cholecystectomy in a porcine model. Acta Cir Bras. 28(11): 762-766. PMid:24316742 43 https://doi.org/10.1590/S0102-86502013001100003 Gilloteaux, J., Pomerants, B., Kelly, T.R. (1989). Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am J Anat. 184(4): 321-333. PMid:2474241 44 https://doi.org/10.1002/aja.1001840407 Cristina, M.L., Lehy, T., Zeitoun, P., Dufougeray, F. (1978). Fine structural classification and comparative distribution of endocrine cells in normal human large intestine. Gastroenterology. 75(1): 20-28. PMid:95721 45 https://doi.org/10.1016/0016-5085(78)93758-7 Sjölund, K., Sandén, G., Håkanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5): 1120-1130. PMid:6194039 46 https://doi.org/10.1016/S0016-5085(83)80080-8 Buffa, R., Capella, C., Fontana, P., Usellini, L., Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 192(2): 227-240. PMid:699014 47 https://doi.org/10.1007/BF00220741 Modlin, I.M., Kidd, M., Pfragner, R., Eick, G.N., Champaneria, M.C. (2006). The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 91(6): 2340-2348. PMid:16537680 48 https://doi.org/10.1210/jc.2006-0110 Cooke, H.J., (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 915, 77-80. PMid:11193603 49 https://doi.org/10.1111/j.1749-6632.2000.tb05225.x Brown, D.R. (1996). Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behav Brain Res. 73(1-2): 193-197. PMid:8788501 50 https://doi.org/10.1016/0166-4328(96)00095-2 Townsend, D., Casey, M.A., Brown, D.R. (2005). Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. Eur J Pharmacol. 519(3): 285-289. PMid:16135363 PMCid:PMC4277208 51 https://doi.org/10.1016/j.ejphar.2005.07.023 Säfsten, B., Sjöblom, M., Flemström, G. (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol. 41(11): 1279-1289. PMid:17060121 52 https://doi.org/10.1080/00365520600641480 Sörensson, J., Jodal, M., Lundgren, O. (2001). Involvement of nerves and calcium channels in the intestinal response to Clostridium difficile toxin A: an experimental study in rats in vivo. Gut 49(1): 56-65. PMid:11413111 PMCid:PMC1728359 53 https://doi.org/10.1136/gut.49.1.56 Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. (2004). Serotonin and vasoactive intestinal peptide antagonists attenuate rotavirus diarrhoea. Gut 53(7): 952-957. PMid:15194642 PMCid:PMC1774112 54 https://doi.org/10.1136/gut.2003.033563 Pal, P.K., Sarkar, S., Chattopadhyay, A., Tan, D.X., Bandyopadhyay, D. (2019). Enterochromaffin cells as the souce of melatonin: Key findings and functional relevance in mammals. Melatonin Res. 2(4): 61-82. 55 https://doi.org/10.32794/mr11250041 Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., Leon, J., Bandyopadhyay, D. (2003). Neurallymediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. J Physiol Pharmacol. 54(Suppl 4): 113-125. 56 Brookes, S.J., Steele, P.A., Costa, M. (1991). Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263(3): 471-481. PMid:1715238 57 https://doi.org/10.1007/BF00327280 Galligan, J.J., Costa, M., Furness, J.B. (1988). Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 253(3): 647-656. PMid:3180190 58 https://doi.org/10.1007/BF00219756 Vanner, S. (2000). Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol. 279(2): G380-387. PMid:10915648 59 https://doi.org/10.1152/ajpgi.2000.279.2.G380 Round, A., Wallis, D.I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26(1): 39-48. PMid:3561718 60 https://doi.org/10.1016/0028-3908(87)90042-6 Hillsley, K., Grundy, D. (1998). Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol. 509(Pt 3): 717-727. PMid:9596794 PMCid:PMC2230991 61 https://doi.org/10.1111/j.1469-7793.1998.717bm.x Glatzle, J., Sternini, C., Robin, C., Zittel, T.T., Wong, H., Reeve, J.R. Jr, Raybould, H.E. (2002). Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123(1): 217-226. PMid:12105850 62 https://doi.org/10.1053/gast.2002.34245 Zhu, J.X., Zhu, X.Y., Owyang, C., Li, Y. (2001). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 530(Pt 3): 431-442. Retraction in: J Physiol. 2023 May; 601(10): 2047 PMid:11158274 PMCid:PMC2278417 63 https://doi.org/10.1111/j.1469-7793.2001.0431k.x